Book Online Tickets for Spark for Data Science with Python, Fremont.  


DESCRIPTION

Taught by a 4 person team including 2 Stanford-educated, ex-Googlers and 2 ex-Flipkart Lead Analysts. This team has decades of practical experience in working with Java and with billions of rows of data. 
Get

Spark for Data Science with Python

 

  • Course Fee

    Price $ 10.00

    Last Date: 31-12-2018

    USD 10

Invite friends

Contact Us

Page Views :

About The Event

 

DESCRIPTION

Taught by a 4 person team including 2 Stanford-educated, ex-Googlers and 2 ex-Flipkart Lead Analysts. This team has decades of practical experience in working with Java and with billions of rows of data. 

Get your data to fly using Spark for analytics, machine learning and data science 

Let’s parse that.

What's Spark? If you are an analyst or a data scientist, you're used to having multiple systems for working with data. SQL, Python, R, Java, etc. With Spark, you have a single engine where you can explore and play with large amounts of data, run machine learning algorithms and then use the same system to productionize your code.

Analytics: Using Spark and Python you can analyze and explore your data in an interactive environment with fast feedback. The course will show how to leverage the power of RDDs and Dataframes to manipulate data with ease. 

Machine Learning and Data Science : Spark's core functionality and built-in libraries make it easy to implement complex algorithms like Recommendations with very few lines of code. We'll cover a variety of datasets and algorithms including PageRank, MapReduce and Graph datasets. 

What's Covered:

Lot's of cool stuff ..

  • Music Recommendations using Alternating Least Squares and the Audioscrobbler dataset
  • Dataframes and Spark SQL to work with Twitter data
  • Using the PageRank algorithm with Google web graph dataset
  • Using Spark Streaming for stream processing 
  • Working with graph data using the  Marvel Social network dataset 

.. and of course all the Spark basic and advanced features: 

  • Resilient Distributed Datasets, Transformations (map, filter, flatMap), Actions (reduce, aggregate) 
  • Pair RDDs , reduceByKey, combineByKey 
  • Broadcast and Accumulator variables 
  • Spark for MapReduce 
  • The Java API for Spark 
  • Spark SQL, Spark Streaming, MLlib and GraphFrames (GraphX for Python) 

Using discussion forums

Please use the discussion forums on this course to engage with other students and to help each other out. Unfortunately, much as we would like to, it is not possible for us at Loonycorn to respond to individual questions from students:-(

We're super small and self-funded with only 2 people developing technical video content. Our mission is to make high-quality courses available at super low prices.

The only way to keep our prices this low is to *NOT offer additional technical support over email or in-person*. The truth is, direct support is hugely expensive and just does not scale.

We understand that this is not ideal and that a lot of students might benefit from this additional support. Hiring resources for additional support would make our offering much more expensive, thus defeating our original purpose.

It is a hard trade-off.

Thank you for your patience and understanding!

Who is the target audience?

  • Yep! Analysts who want to leverage Spark for analyzing interesting datasets
  • Yep! Data Scientists who want a single engine for analyzing and modelling data as well as productionizing it.
  • Yep! Engineers who want to use a distributed computing engine for batch or stream processing or both

 

BASIC KNOWLEDGE
  • The course assumes knowledge of Python. You can write Python code directly in the PySpark shell. If you already have IPython Notebook installed, we'll show you how to configure it for Spark
  • For the Java section, we assume basic knowledge of Java. An IDE which supports Maven, like IntelliJ IDEA/Eclipse would be helpful
  • All examples work with or without Hadoop. If you would like to use Spark with Hadoop, you'll need to have Hadoop installed (either in pseudo-distributed or cluster mode).

 

 

WHAT YOU WILL LEARN
  • Use Spark for a variety of analytics and Machine Learning tasks
  • Implement complex algorithms like PageRank or Music Recommendations
  • Work with a variety of datasets from Airline delays to Twitter, Web graphs, Social networks and Product Ratings
  • Use all the different features and libraries of Spark : RDDs, Dataframes, Spark SQL, MLlib, Spark Streaming and GraphX

click to continue reading